1000 resultados para peptide synthetase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacillus subtilis strain ATCC6633 has been identified as a producer of mycosubtilin, a potent antifungal peptide antibiotic. Mycosubtilin, which belongs to the iturin family of lipopeptide antibiotics, is characterized by a β-amino fatty acid moiety linked to the circular heptapeptide Asn-Tyr-Asn-Gln-Pro-Ser-Asn, with the second, third, and sixth position present in the D-configuration. The gene cluster from B. subtilis ATCC6633 specifying the biosynthesis of mycosubtilin was identified. The putative operon spans 38 kb and consists of four ORFs, designated fenF, mycA, mycB, and mycC, with strong homologies to the family of peptide synthetases. Biochemical characterization showed that MycB specifically adenylates tyrosine, as expected for mycosubtilin synthetase, and insertional mutagenesis of the operon resulted in a mycosubtilin-negative phenotype. The mycosubtilin synthetase reveals features unique for peptide synthetases as well as for fatty acid synthases: (i) The mycosubtilin synthase subunit A (MycA) combines functional domains derived from peptide synthetases, amino transferases, and fatty acid synthases. MycA represents the first example of a natural hybrid between these enzyme families. (ii) The organization of the synthetase subunits deviates from that commonly found in peptide synthetases. On the basis of the described characteristics of the mycosubtilin synthetase, we present a model for the biosynthesis of iturin lipopeptide antibiotics. Comparison of the sequences flanking the mycosubtilin operon of B. subtilis ATCC6633, with the complete genome sequence of B. subtilis strain 168 indicates that the fengycin and mycosubtilin lipopeptide synthetase operons are exchanged between the two B. subtilis strains.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have developed expedient and reliable methods to isolate cyclosporin synthetase for in vitro biosynthesis of cyclosporins. We have examined enzyme purification strategies suited to large-scale processing and present a chromatographic sequence that serves as a pilot model for industrial scale preparation of cyclosporin synthetase from cyclosporin producing fungi. A chromatographic sequence consisting of ammonium sulfate precipitation → gel filtration → hydrophobic interaction chromatography → anion exchange chromatography, yielded an electrophoretically homogeneous cyclosporin synthetase preparation (Coomassie G-250 brilliant blue staining). Furthermore, a native polyacrylamide gel electrophoresis system was developed for the isolation of active cyclosporin synthetase enzyme from crude extracts of cyclosporin producing fungi. The environmental factors affecting enzyme stability and the continuity of the in vitro cyclosporin biosynthetic reaction-temperature, pH, and substrate depletion were assessed and manageable conditions have been defined for sustainable cyclosporin biosynthesis with enzyme isolates. Cyclosporin synthetase exhibited an optimal temperature range of 24–29 °C and a pH optimum of 7.6. The native enzyme displayed a pI of 5.7, as determined by isoelectric focusing. The industrial implementation of an in vitro biosynthetic approach could potentially prove useful for the production of important therapeutic cyclosporins which occur as only minor fermentation by-products.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We employed a highly specific photoaffinity labeling procedure, using 14C-labeled S-adenosyl-L-methionine (AdoMet) to define the chemical structure of the AdoMet binding centers on cyclosporin synthetase (CySyn). Tryptic digestion of CySyn photolabeled with either [methyl-14C]AdoMet or [carboxyl-14C]AdoMet yielded the sequence H2N-Asn-Asp-Gly-Leu-Glu-Ser-Tyr-Val-Gly-Ile-Glu-Pro-Ser-Arg-COOH (residues 10644-10657), situated within the N-methyltransferase domain of module 8 of CySyn. Radiosequencing detected Glu10654 and Pro10655 as the major sites of derivatization. [carboxyl-14C]AdoMet in addition labeled Tyr10650. Chymotryptic digestion generated the radiolabeled peptide H2N-Ile-Gly-Leu-Glu-Pro-Ser-Gln-Ser-Ala-Val-Gln-Phe-COOH, corresponding to amino acids 2125-2136 of the N-methyltransferase domain of module 2. The radiolabeled amino acids were identified as Glu2128 and Pro2129, which are equivalent in position and function to the modified residues identified with tryptic digestions in module 8. Homology modeling of the N-methyltransferase domains indicates that these regions conserve the consensus topology of the AdoMet binding fold and consensus cofactor interactions seen in structurally characterized AdoMet-dependent methyltransferases. The modified sequence regions correspond to the motif II consensus sequence element, which is involved in directly complexing the adenine and ribose components of AdoMet. We conclude that the AdoMet binding to nonribosomal peptide synthetase N-methyltransferase domains obeys the consensus cofactor interactions seen among most structurally characterized low molecular weight AdoMet-dependent methyltransferases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The multifunctional polypeptide cyclosporin synthetase (CySyn) remains one of the most complex nonribosomal peptide synthetase described. In this study we used a highly specific photoaffinity labeling procedure with the natural cofactor S-adenosyl-l-methionine (AdoMet), 14C-isotopically labeled at the Sδ methyl group to probe the concerted AdoMet-binding interaction of the N-methyltransferase (N-MTase) centers of CySyn. The binding stoichiometry for the enzyme–AdoMet complex was determined to be 1:7, which is in agreement with inferences made from analysis of the complementary DNA sequence of the simA gene encoding the CySyn polypeptide. The photolabeling of the AdoMet-binding sites displayed homotropic negative cooperativity, characterized by a curvilinear Scatchard plot with upward concavity. Although, the process of N-methyl transfer is not a critical event for peptide elongation, the destabilizing homotropic interactions between N-MTase centers that were observed may represent a mechanism whereby the enzyme preserves the proficiency of the substrate-channeling process of cyclosporin peptide assembly over a broad range of cofactor concentrations. Furthermore, we demonstrated the utility of the photolabeling procedure for tracking the enzyme during purification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microcystins are small hepatotoxic peptides produced by a number of cyanobacteria. They are synthesized non-ribosomally by multifunctional enzyme complex synthetases encoded by the mcy genes. Primers deduced from mcy genes were designed to discriminate between toxic microcystin-producing strains and non-toxic strains. Thus, PCR-mediated detection of mcy genes could be a simple and efficient means to identify potentially harmful genotypes among cyanobacterial populations in bodies of water. We surveyed the distribution of the mcyB gene in different Microcystis strains isolated from Chinese bodies of water and confirmed that PCR can be reliably used to identify toxic strains. By omitting any DNA purification steps, the modified PCR protocol can greatly simplify the process. Cyanobacterial cells enriched from cultures, field samples, or even sediment samples could be used in the PCR assay. This method proved sensitive enough to detect mcyB genes in samples with less than 2,000 Microcystis cells per ml. Its accuracy, specificity and applicability were confirmed by sequencing selected DNA amplicons, as well as by HPLC, ELISA and mouse bioassay as controls for toxin production of every strain used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have developed expedient and reliable methods to isolate cyclosporin synthetase for in vitro biosynthesis of cyclosporins. We have examined enzyme purification strategies suited to large-scale processing and present a chromatographic sequence that serves as a pilot model for industrial scale preparation of cyclosporin synthetase from cyclosporin producing fungi. A chromatographic sequence consisting of ammonium sulfate precipitation → gel filtration → hydrophobic interaction chromatography → anion exchange chromatography, yielded an electrophoretically homogeneous cyclosporin synthetase preparation (Coomassie G-250 brilliant blue staining). Furthermore, a native polyacrylamide gel electrophoresis system was developed for the isolation of active cyclosporin synthetase enzyme from crude extracts of cyclosporin producing fungi. The environmental factors affecting enzyme stability and the continuity of the in vitro cyclosporin biosynthetic reaction-temperature, pH, and substrate depletion were assessed and manageable conditions have been defined for sustainable cyclosporin biosynthesis with enzyme isolates. Cyclosporin synthetase exhibited an optimal temperature range of 24–29 °C and a pH optimum of 7.6. The native enzyme displayed a pI of 5.7, as determined by isoelectric focusing. The industrial implementation of an in vitro biosynthetic approach could potentially prove useful for the production of important therapeutic cyclosporins which occur as only minor fermentation by-products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Streptomyces lavendulae produces complestatin, a cyclic peptide natural product that antagonizes pharmacologically relevant protein–protein interactions including formation of the C4b,2b complex in the complement cascade and gp120-CD4 binding in the HIV life cycle. Complestatin, a member of the vancomycin group of natural products, consists of an α-ketoacyl hexapeptide backbone modified by oxidative phenolic couplings and halogenations. The entire complestatin biosynthetic and regulatory gene cluster spanning ca. 50 kb was cloned and sequenced. It consisted of 16 ORFs, encoding proteins homologous to nonribosomal peptide synthetases, cytochrome P450-related oxidases, ferredoxins, nonheme halogenases, four enzymes involved in 4-hydroxyphenylglycine (Hpg) biosynthesis, transcriptional regulators, and ABC transporters. The nonribosomal peptide synthetase consisted of a priming module, six extending modules, and a terminal thioesterase; their arrangement and domain content was entirely consistent with functions required for the biosynthesis of a heptapeptide or α-ketoacyl hexapeptide backbone. Two oxidase genes were proposed to be responsible for the construction of the unique aryl-ether-aryl-aryl linkage on the linear heptapeptide intermediate. Hpg, 3,5-dichloro-Hpg, and 3,5-dichloro-hydroxybenzoylformate are unusual building blocks that repesent five of the seven requisite monomers in the complestatin peptide. Heterologous expression and biochemical analysis of 4-hydroxyphenylglycine transaminon confirmed its role as an aminotransferase responsible for formation of all three precursors. The close similarity but functional divergence between complestatin and chloroeremomycin biosynthetic genes also presents a unique opportunity for the construction of hybrid vancomycin-type antibiotics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epipolythiodioxopiperazine toxins are secreted by a range of fungi, including Leptosphaeria maculans, which produces sirodesmin, and Aspergillus fumigatus, which produces gliotoxin. The L. maculans biosynthetic gene cluster for sirodesmin includes an ABC transporter gene, sirA. Disruption of this gene led to increased secretion of sirodesmin into the medium and an altered ratio of sirodesmin to its immediate precursor. The transcription pattern of a peptide synthetase that catalyses an early step in sirodesmin biosynthesis was elevated in the sirA mutant by 47% over a 7-day period. This was consistent with the finding that the transporter mutant had elevated sirodesmin levels. Despite increased production of sirodesmin, the sit-A mutant was more sensitive to both sirodesmin and gliotoxin. The putative gliotoxin transporter gene, gliA, (a major facilitator superfamily transporter) from A.fumigatus complemented the tolerance of the L. maculans sirA mutant to gliotoxin, but not to sirodesmin. The results indicate that SirA contributes to self-protection against sirodesmin in L. maculans and suggest a transporter other than SirA is primarily responsible for efflux of endogenously produced sirodesmin. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pahayokolides A-D are cytotoxic cyclic polypeptides produced by the freshwater cyanobacterium Lyngbya sp. strain 15-2 that possess an unusual β-amino acid, 3-amino-2,5,7,8-tetrahydroxy-10-methylundecanoic acid (Athmu). The absolute configuration of pahayokolides A-D was determined using advanced Marfey’s method. It was also confirmed that a pendant N-acetyl- N-methyl leucine moiety in pahayokolide A was absent in pahayokolides B and pahayokolides C-D were conformers of pahayokolide A. Feeding experiments indicated that the biosynthesis of the Athmu sidechain arises from leucine or α-ketoisovalerate, however could not be further extended by three rounds of condensation with malonate units. Putative four peptide and one unique polyketide synthetases in Lyngbya sp. strain 15-2 were identified by using a PCR method and degenerate primers derived from conserved core sequences of known NRPSs and PKSs. Identification of one unique KS domain conflicted with the logic rule that the long side chain of Athmu was assembled by three rounds of ketide extensions if PKSs were involved. A gene cluster (pah) encoding a peptide synthetase putatively producing pahayokolide was cloned, partially sequenced and characterized. Seven modules of the non-ribosomal peptide synthetase (NRPS) were identified. Ten additional opening reading frames (ORFs) were found, responsible for peptide resistance, transport and degradation. Although the predicted substrate specificities of NRPS agreed with the structure of pahayokolide A partially, the disagreement could be explained. However, no PKS gene was found in the pah gene cluster.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pahayokolides A-D are cytotoxic cyclic polypeptides produced by the freshwater cyanobacterium Lyngbya sp. strain 15-2 that possess an unusual β-amino acid, 3-amino-2,5,7,8-tetrahydroxy-10-methylundecanoic acid (Athmu). The absolute configuration of pahayokolides A-D was determined using advanced Marfey’s method. It was also confirmed that a pendant N-acetyl-N-methyl leucine moiety in pahayokolide A was absent in pahayokolides B and pahayokolides C-D were conformers of pahayokolide A. Feeding experiments indicated that the biosynthesis of the Athmu sidechain arises from leucine or α-ketoisovalerate, however could not be further extended by three rounds of condensation with malonate units. Putative four peptide and one unique polyketide synthetases in Lyngbya sp. strain 15-2 were identified by using a PCR method and degenerate primers derived from conserved core sequences of known NRPSs and PKSs. Identification of one unique KS domain conflicted with the logic rule that the long side chain of Athmu was assembled by three rounds of ketide extensions if PKSs were involved. A gene cluster (pah) encoding a peptide synthetase putatively producing pahayokolide was cloned, partially sequenced and characterized. Seven modules of the non-ribosomal peptide synthetase (NRPS) were identified. Ten additional opening reading frames (ORFs) were found, responsible for peptide resistance, transport and degradation. Although the predicted substrate specificities of NRPS agreed with the structure of pahayokolide A partially, the disagreement could be explained. However, no PKS gene was found in the pah gene cluster.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several biosurfactants with antagonistic activity are produced by a variety of microorganisms. Lipopeptides (LPPs) produced by some Bacillus strains, including surfactin, fengycin and iturin are synthesized nonribosomally by mega-peptide synthetase (NRPS) units and they are particularly relevant as antifungal agents. Characterisation, identification and evaluation of the potentials of several bacterial isolates were undertaken in order to establish the production of active lipopeptides against biodeteriogenic fungi from heritage assets. Analysis of the iturin operon revealed four open reading frames (ORFs) with the structural organisation of the peptide synthetases. Therefore, this work adopted a molecular procedure to access antifungal potential of LPP production by Bacillus strains in order to exploit the bioactive compounds synthesis as a green natural approach to be applied in biodegraded cultural heritage context. The results reveal that the bacterial strains with higher antifungal potential exhibit the same morphological and biochemical characteristics, belonging to the genera Bacillus. On the other hand, the higher iturinic genetic expression, for Bacillus sp. 3 and Bacillus sp. 4, is in accordance with the culture antifungal spectra. Accordingly, the adopted methodology combining antifungal screening and molecular data is represent a valuable tool for quick identification of iturin-producing strains, constituting an effective approach for confirming the selection of lipopeptides producer strains.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bj-BPP-10c is a bioactive proline-rich decapeptide, part of the C-type natriuretic peptide precursor, expressed in the brain and in the venom gland of Bothrops jararaca. We recently showed that Bj-BPP-10c displays a strong, sustained anti-hypertensive effect in spontaneous hypertensive rats (SHR), without causing any effect in normotensive rats, by a pharmacological effect independent of angiotensin-converting enzyme inhibition. Therefore, we hypothesized that another mechanism should be involved in the peptide activity. Here we used affinity chromatography to search for kidney cytosolic proteins with affinity for Bj-BPP-10c and demonstrate that argininosuccinate synthetase (AsS) is the major protein binding to the peptide. More importantly, this interaction activates the catalytic activity of AsS in a dose-dependent manner. AsS is recognized as an important player of the citrulline-NO cycle that represents a potential limiting step in NO synthesis. Accordingly, the functional interaction of Bj-BPP-10c and AsS was evidenced by the following effects promoted by the peptide: (i) increase of NO metabolite production in human umbilical vein endothelial cell culture and of arginine in human embryonic kidney cells and (ii) increase of arginine plasma concentration in SHR. Moreover, alpha-methyl-DL-aspartic acid, a specific AsS inhibitor, significantly reduced the anti-hypertensive activity of Bj-BPP-10c in SHR. Taken together, these results suggest that AsS plays a role in the anti-hypertensive action of Bj-BPP-10c. Therefore, we propose the activation of AsS as a new mechanism for the anti-hypertensive effect of Bj-BPP-10c in SHR and AsS as a novel target for the therapy of hypertension-related diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many microbial peptide secondary metabolites possess important medicinal properties, of which the immunosuppressant cyclosporin A is an example. The enormous structural and functional diversity of these low-molecular weight peptides is attributable to their mode of biosynthesis. Peptide secondary metabolites are assembled non-ribosomally by multi-functional enzymes, termed non-ribosomal peptide synthetases. These systems consist of a multi-modular arrangement of the functional domains responsible for the catalysis of the partial reactions of peptide assembly. The extensive homology shared among NRPS systems allows for the generalisation of the knowledge garnered from studies of systems of diverse origins. In this review we shall focus the contemporary knowledge of non-ribosomal peptide biosynthesis on the structure and function of the cyclosporin biosynthetic system, with some emphasis on the re-direction of the biosynthetic potential of this system by combinatorial approaches.